Skip to content

lpalbou/AbstractFramework

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AbstractFramework

Build durable, observable AI systems — fully open source, works offline.

AbstractFramework is a modular ecosystem for building AI agents and workflows that survive restarts, scale to production, and give you full visibility into what's happening. Every component is open source, works with local models, and designed to be composed however you need.

┌──────────────────────────────────────────┬──────────────────────────────────┐
│   GATEWAY PATH (Recommended)             │   LOCAL PATH (Alternative)       │
├──────────────────────────────────────────┼──────────────────────────────────┤
│                                          │                                  │
│  Browser UIs (Observer, Flow Editor,     │  AbstractCode (terminal)         │
│  Code Web, Your App)                     │  AbstractAssistant (macOS tray)  │
│              │                           │             │                    │
│              ▼                           │             │                    │
│  ┌────────────────────────────────────┐  │             │                    │
│  │        AbstractGateway             │  │             │                    │
│  │  ────────────────────────────────  │  │             │                    │
│  │  Bundle discovery (specialized     │  │             │                    │
│  │  agents across all clients)        │  │             │                    │
│  │  Run control (start/pause/resume)  │  │             │                    │
│  │  Ledger streaming (real-time SSE)  │  │             │                    │
│  └──────────────────┬─────────────────┘  │             │                    │
│                     │                    │             │                    │
└─────────────────────┼────────────────────┴─────────────┼────────────────────┘
                      └──────────────────┬───────────────┘
                                         ▼
┌─────────────────────────────────────────────────────────────────────────────┐
│  Composition: AbstractAgent (ReAct/CodeAct/MemAct) + AbstractFlow (.flow)   │
└─────────────────────────────────────────────────────────────────────────────┘
                                         │
                                         ▼
┌──────────────────────────────────────────────────────────────────────----───────┐
│  Foundation: AbstractRuntime + AbstractCore (+ Voice/Vision capability plugins) │
└──────────────────────────────────────────────────────────────────────────----───┘
                                         │
                                         ▼
┌─────────────────────────────────────────────────────────────────────────────┐
│  Memory & Knowledge: AbstractMemory · AbstractSemantics                     │
└─────────────────────────────────────────────────────────────────────────────┘

Why AbstractFramework?

  • 100% Open Source — MIT licensed, no black boxes, you own everything
  • Local First — Run entirely offline with Ollama, LM Studio, or any local model
  • Durable — Workflows survive crashes; resume exactly where you left off
  • Observable — Every operation is logged; replay any run from history
  • Modular — Use one package or the full stack; compose what you need

Quick Start

Select a Provider / Model

Start a local model with Ollama

ollama serve && ollama pull qwen3:4b

or install lmstudio with the model you want

Alternatively use OpenAI / Anthropic / OpenRouter

Set one of those API keys as environment variable, OPENAI_API_KEY, ANTHROPIC_API_KEY, OPENROUTER_API_KEY

For the examples below, we will use ollama and qwen3:4b but you can use any provider:model.

Option 1: Terminal Agent (5 minutes)

The fastest way to try an AbstractFramework agent:

# Run AbstractCode
pip install abstractcode
abstractcode --provider ollama --model qwen3:4b

You now have a durable coding assistant in your terminal. Type /help to explore.

Durability: Your session persists across restarts — close and reopen, your full context is preserved. Start fresh with /clear.

Option 2: Tray Assistant (macOS)

Get a menu bar assistant with optional voice on macOS:

# Install and run
pip install abstractassistant
assistant tray

The assistant appears in your menu bar. Click to interact, or use keyboard shortcuts.

Durability: Sessions persist — your conversation history is preserved across app restarts.

Option 3: Just the LLM API

Use AbstractCore as a drop-in unified LLM client that work with any provider and model:

from abstractcore import create_llm

llm = create_llm("ollama", model="qwen3:4b-instruct")
# llm = create_llm("openai", model="gpt-4o")
# llm = create_llm("anthropic", model="claude-3-5-sonnet-latest")

response = llm.generate("Explain durable execution in 3 bullets.")
print(response.content)

Option 4: Gateway + Browser UI

Deploy a run gateway and observe workflows in your browser:

pip install "abstractgateway"

export ABSTRACTGATEWAY_AUTH_TOKEN="for-my-security-my-token-must-be-at-least-15-chars"
export ABSTRACTGATEWAY_DATA_DIR="my-folder/runtime/gateway"

abstractgateway serve --port 8080
npx @abstractframework/observer

Open http://localhost:3001, connect to the gateway, and start observing.


Install

Python Packages (pip)

Install only what you need:

# Foundation
pip install abstractcore                # Unified LLM API
pip install abstractruntime             # Durable execution

# Composition
pip install abstractagent               # Agent patterns (ReAct, CodeAct, MemAct)
pip install abstractflow                # Visual workflows

# Memory & Semantics
pip install abstractmemory              # Temporal triple store + vector search
pip install abstractsemantics           # Predicate/entity-type registry

# Applications
pip install abstractcode                # Terminal TUI (durable sessions)
pip install abstractassistant           # macOS tray app
pip install "abstractgateway"           # HTTP run gateway

# Modalities (optional capability plugins for AbstractCore)
pip install abstractvoice               # Adds llm.voice (TTS) + llm.audio (STT)
pip install abstractvision              # Adds llm.vision (image generation)

JavaScript/Node Packages (npm)

# Web UIs (run directly)
npx @abstractframework/observer        # Gateway observability dashboard
npx @abstractframework/flow            # Visual workflow editor
npx @abstractframework/code            # Browser coding assistant

# UI component libraries (for building your own apps)
npm install @abstractframework/ui-kit
npm install @abstractframework/panel-chat
npm install @abstractframework/monitor-flow
npm install @abstractframework/monitor-active-memory
npm install @abstractframework/monitor-gpu

The Ecosystem

Foundation

Package What It Does Install
AbstractCore Unified LLM API — providers, tools, structured output, media pip install abstractcore
AbstractRuntime Durable execution — ledger, effects, pause/resume, replay pip install abstractruntime

Composition

Package What It Does Install
AbstractAgent Agent patterns — ReAct, CodeAct, MemAct loops pip install abstractagent
AbstractFlow Visual workflows — portable .flow bundles + editor pip install abstractflow

Memory & Semantics

Package What It Does Install
AbstractMemory Temporal triple store — provenance-aware, vector search pip install abstractmemory
AbstractSemantics Schema registry — predicates, entity types for KG pip install abstractsemantics

Applications

Package What It Does Install
AbstractCode Terminal TUI — durable coding assistant pip install abstractcode
AbstractAssistant macOS tray app — local agent with optional voice pip install abstractassistant
AbstractGateway HTTP server — remote runs, durable commands, SSE pip install abstractgateway
AbstractObserver Browser UI — observe, launch, and control runs npx @abstractframework/observer

Modalities (AbstractCore Capability Plugins)

These are optional capability plugins for AbstractCore. Once installed, they expose additional capabilities on llm instances (e.g., llm.voice.tts(), llm.vision.t2i()), keeping AbstractCore lightweight by default.

Package What It Does Install
AbstractVoice Voice I/O — adds llm.voice (TTS) and llm.audio (STT) pip install abstractcore abstractvoice
AbstractVision Image generation — adds llm.vision (text-to-image, image-to-image) pip install abstractcore abstractvision

Web UIs (npm)

Package What It Does Install
@abstractframework/flow Visual workflow editor (drag-and-drop) npx @abstractframework/flow
@abstractframework/code Browser-based coding assistant npx @abstractframework/code

UI Components (npm)

Package What It Does
@abstractframework/ui-kit Theme tokens + UI primitives
@abstractframework/panel-chat Chat thread + message cards + composer
@abstractframework/monitor-flow Agent-cycle trace viewer
@abstractframework/monitor-active-memory Knowledge graph explorer (ReactFlow)
@abstractframework/monitor-gpu GPU utilization widget

Documentation

Guide Description
Getting Started Pick a path and run something
Architecture How the pieces fit together
Configuration Environment variables & providers
FAQ Common questions

Philosophy

We built AbstractFramework because we wanted:

  1. Full control — No vendor lock-in, no proprietary dependencies
  2. Local by default — Privacy and cost control with open-source models
  3. Durability — AI systems that don't lose work when things crash
  4. Observability — Complete visibility, not a black box
  5. Composability — Use what you need, replace what you don't

Cloud APIs are supported when you need them (complex reasoning tasks), but the framework is designed to run entirely on your hardware.


Contributing

Every package is its own repo. Find what interests you:

Foundation: AbstractCore · AbstractRuntime

Composition: AbstractAgent · AbstractFlow

Memory: AbstractMemory · AbstractSemantics

Apps: AbstractCode · AbstractAssistant · AbstractGateway · AbstractObserver

Modalities: AbstractVoice · AbstractVision

UI Components: AbstractUIC


License

MIT — see LICENSE.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published