Skip to content

lightning-rod-labs/lightningrod-python-sdk

Repository files navigation

Lightning Rod Labs

Lightning Rod Python SDK Beta

The Lightning Rod SDK provides a simple Python API for generating custom forecasting datasets to train your LLMs. Transform news articles, documents, and other real-world data into high-quality training samples automatically.

Based on our research: Future-as-Label: Scalable Supervision from Real-World Outcomes

👋 Quick Start

1. Install the SDK

pip install lightningrod-ai

2. Get your API key

Sign up at dashboard.lightningrod.ai to get your API key and $50 of free credits.

3. Generate your first dataset

Generate 1000+ forecasting questions in minutes - from raw sources to labeled dataset, automatically. ⚡

from lightningrod import LightningRod, AnswerType, QuestionPipeline, NewsSeedGenerator, ForwardLookingQuestionGenerator, WebSearchLabeler

lr = LightningRod(api_key="your-api-key")

binary_answer = AnswerType(answer_type=AnswerTypeEnum.BINARY)

pipeline = QuestionPipeline(
    seed_generator=NewsSeedGenerator(
        start_date=datetime.now() - timedelta(days=90),
        end_date=datetime.now(),
        search_query=["Trump"],
    ),
    question_generator=ForwardLookingQuestionGenerator(
        instructions="Generate binary forecasting questions about Trump's actions and decisions.",
        examples=[
            "Will Trump impose 25% tariffs on all goods from Canada by February 1, 2025?",
            "Will Pete Hegseth be confirmed as Secretary of Defense by February 15, 2025?",
        ]
    ),
    labeler=WebSearchLabeler(answer_type=binary_answer),
)

dataset = lr.transforms.run(pipeline, max_questions=3000)
dataset.flattened() # Ready-to-use data for your training pipelines

We use this to generate the Future-as-Label training dataset for our research paper.

✨ Examples

We have some example notebooks to help you get started! If you have trouble using the SDK, please submit an issue on Github.

Example Name Path Google Colab Link
Quick Start notebooks/01_quick_start.ipynb Open in Colab
News Datasource notebooks/02_news_datasource.ipynb Open in Colab
Custom Documents notebooks/03_custom_documents_datasource.ipynb Open in Colab
Binary Answer Type notebooks/04_binary_answer_type.ipynb Open in Colab
Continuous Answer Type notebooks/05_continuous_answer_type.ipynb Open in Colab
Multiple Choice Answer Type notebooks/06_multiple_choice_answer_type.ipynb Open in Colab
Free Response Answer Type notebooks/07_free_response_answer_type.ipynb Open in Colab

For complete API reference documentation, see API.md. This includes overview of the core system concepts, methods and types.

License

MIT License - see LICENSE file for details

About

Python SDK for dataset generation on LightningRod platform ⚡

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •