Read .npy arrays saved with NumPy directly in modern JavaScript runtimes.
npm install npyjs
# or
yarn add npyjsSupports Node ≥18, modern browsers, and Deno/Bun.
// Modern named export (recommended)
import { load } from "npyjs";
// Back-compatibility class (matches legacy docs/tests)
import npyjs from "npyjs";import { load } from "npyjs";
const arr = await load("my-array.npy");
// arr has { data, shape, dtype, fortranOrder }
console.log(arr.shape); // e.g., [100, 784]import npyjs from "npyjs";
// Default options
const n = new npyjs();
// Disable float16→float32 conversion
const n2 = new npyjs({ convertFloat16: false });
const arr = await n.load("my-array.npy");npyjs returns flat typed arrays with a shape. npyjs also ships a small helper to turn the flat data + shape into nested JS arrays.
import { load } from "npyjs";
import { reshape } from "npyjs/reshape";
const { data, shape, fortranOrder } = await load("my-array.npy");
const nested = reshape(data, shape, fortranOrder); // -> arrays nested by dimsFor C-order arrays (the NumPy default), pass fortranOrder = false (default).
For Fortran-order arrays, pass true and the helper will return the natural row-major nested structure.
Or pair it with ndarray or TensorFlow.js:
import ndarray from "ndarray";
import { load } from "npyjs";
const { data, shape } = await load("my-array.npy");
const tensor = ndarray(data, shape);
console.log(tensor.get(10, 15));int8,uint8int16,uint16int32,uint32int64,uint64(asBigInt)float32float64float16(converted to float32 by default)complex64(asFloat32Arraywith interleaved real/imag)complex128(asFloat64Arraywith interleaved real/imag)
// Default: converts float16 → float32
const n1 = new npyjs();
// Keep raw Uint16Array
const n2 = new npyjs({ convertFloat16: false });Complex arrays are returned as typed arrays with interleaved real and imaginary parts: [real0, imag0, real1, imag1, ...]
import { load } from "npyjs";
const { data, shape } = await load("complex-array.npy");
// For a shape of [3], data will have 6 elements: [re0, im0, re1, im1, re2, im2]
// Access the first complex number
const real0 = data[0];
const imag0 = data[1];Use the dump function to create .npy files:
import { dump } from "npyjs";
import { writeFileSync } from "fs";
// Dump a typed array
const arr = new Float32Array([1.0, 2.0, 3.0, 4.0]);
const bytes = dump(arr, [2, 2]); // 2x2 shape
writeFileSync("output.npy", Buffer.from(bytes));
// Dump a plain array (dtype is inferred)
const plain = [1, 2, 3, 4];
const bytes2 = dump(plain, [4]);Since complex types cannot be inferred from plain number arrays, use the dtype option:
import { dump } from "npyjs";
// Complex array: 1+2j, 3-4j as interleaved [real, imag, ...]
const complexData = [1, 2, 3, -4];
const bytes = dump(complexData, [2], { dtype: "c8" }); // complex64
// Or use c16 for complex128
const bytes128 = dump(complexData, [2], { dtype: "c16" });npm run build # Build to dist/
npm test # Run Vitest
npm run typecheck # TypeScript type checkingApache-2.0 © JHU APL
````
