diff --git a/.floydexpt b/.floydexpt new file mode 100644 index 0000000..398db57 --- /dev/null +++ b/.floydexpt @@ -0,0 +1 @@ +{"name": "cnn-test-visualized", "family_id": "qNGVhmKB7MjGF7oh6KSFPc"} \ No newline at end of file diff --git a/.floydignore b/.floydignore new file mode 100644 index 0000000..02f9be9 --- /dev/null +++ b/.floydignore @@ -0,0 +1,14 @@ + +# Directories and files to ignore when uploading code to floyd + +.git +.eggs +eggs +lib +lib64 +parts +sdist +var +*.pyc +*.swp +.DS_Store diff --git a/ConvolutionalNeuralNetwork.py b/ConvolutionalNeuralNetwork.py index 4c1ed9d..2385377 100644 --- a/ConvolutionalNeuralNetwork.py +++ b/ConvolutionalNeuralNetwork.py @@ -1,5 +1,6 @@ import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data +import os mnist = input_data.read_data_sets("../MNIST_data/", one_hot=True) @@ -116,9 +117,9 @@ with tf.Session() as sess: sess.run(tf.global_variables_initializer()) - training_writer = tf.summary.FileWriter("../LogsCNN/training", sess.graph) - testing_writer = tf.summary.FileWriter("../LogsCNN/testing", sess.graph) - accuracy_writer = tf.summary.FileWriter("../LogsCNN/accuracy", sess.graph) + training_writer = tf.summary.FileWriter("/output/training_log", sess.graph) + testing_writer = tf.summary.FileWriter("/output/testing_log", sess.graph) + accuracy_writer = tf.summary.FileWriter("/output/accuracy_log", sess.graph) for epoch in range(training_epochs): train_batch_data, train_batch_labels = mnist.train.next_batch(batch_size) @@ -143,7 +144,7 @@ if epoch % 100 == 0: print("Saving the model.") - save_path = saver.save(sess, "../saveCNN/trained_model" + str(epoch) + ".ckpt") + save_path = saver.save(sess, "/output/trained_model" + str(epoch) + ".ckpt") final_accuracy = sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels})